4-(β-D-GLUCOPYRANOSYLOXY)BENZOIC ACID, A CHARACTERISTIC PHENOLIC CONSTITUENT OF THE APIACEAE

UWE DIRKS and KARL HERRMANN

Institute of Food Chemistry, University of Hannover, D-3000 Hannover 91, West Germany

(Revised received 20 January 1984)

Key Word Index—*Pimpinella anisum*; Apiaceae; *Illicium verum*; Illiciaceae; $4-(\beta-D-glucopyranosyloxy)$ benzoic acid; prep. HPLC; chemotaxonomy.

Abstract—A characteristic phenolic glucoside of the Apiaceae was isolated from anise seeds. Its structure was established as $4-(\beta-D-glucopyranosyloxy)$ benzoic acid. The compound is widely distributed among the Apiaceae and is also present in staranise (Illiciaceae).

INTRODUCTION

Spices and other plants of the Apiaceae contain p-hydroxybenzoic acid derivatives. Preliminary examination [1] indicated the presence of large amounts of p-hydroxybenzoic acid, especially in anise seeds. As a result

of the present work p-hydroxybenzoic acid glucoside 1 was isolated from Pimpinella anisum (Apiaceae) in a pure state. It was characterized as the 4-glucoside. p-Hydroxybenzoic acid glucoside has previously been found in conifers, i.e. in species of Larix [2-4], Abies [2, 5] and Pinus [5-7], but the compound was not completely

Table 1. Concentrations of 4-(β-D-glucopyranosyloxy)benzoic acid in Apiaceae and staranise

Species	Part	Content (ppm fr. wt)
Anise (Pimpinella anisum)	fruit	730
		800
		830
		870
		1010
		1080
Dill (Anethum graveolens var. hortorum)	fruit	42
		188
	leaf	11
	stalk	3
Fennel (Foeniculum vulgare var. dulce)	fruit	106
		30
Sweet Fennel (Foeniculum vulgare var. azoricum)	leaf sheath	16
Coriander (Coriandrum sativum)	fruit	8
		16
		30
Caraway (Carum carvi)	fruit	37
		42
Lovage (Levisticum officinale)	leaf	3
Carrot (Daucus carota ssp. sativus)	fruit	65
	root	11
Parsley (Petroselinum crispum ssp. crispum)	fruit	165
	herb	3
Celeriac (Apium graveolens var. rapaceum)	fruit	56
	tuberous root	20
		3
Staranise (Illicium verum)	fruit	730
		770
		840

Where more than one value is given, plant samples were of varying origin.

characterized. However, its synthesis has been described by Helferich and Lutzmann [8].

RESULTS AND DISCUSSION

From whole anise seeds nearly 1 g of 1 was isolated pure by means of repeated prep. HPLC. Its purity was established by HPLC on different columns before and after derivatisation (as the benzoate) [9] and after silvlation by capillary GC. The structure of 1 was established by acid hydrolysis with 2 N HCl yielding equal amounts of glucose and p-hydroxybenzoic acid. The presence of a β -glucosidic linkage was confirmed by hydrolysis of 1 with β -glucosidase. The structure of 1 was further supported by spectral measurements (IR, ¹H and ¹³C NMR) and comparison with literature standards [10]. By analytical HPLC, 1 was shown to be a characteristic phenolic constituent of the Apiaceae. From anise seeds the greatest amounts were obtained. Compound 1 was found to occur in all ten species investigated, especially in the fruits (Table 1). The glucoside is extremely stable in the dried fruits, since 1000 ppm (0.1%) of the glucoside were detected in four-year-old anise seeds. Of the investigated spices and vegetables, anise and staranise seeds contain the highest amounts of the glucoside. Although the staranise (Illicium verum) belongs to a different family (Illiciaceae), anise and staranise are very similar in their volatile oil constituents. The glucoside was not detected in cloves (Syzygium aromaticum; Myrtaceae), allspice (Pimenta dioica, Myrtaceae) or cardamom (Elettaria cardamomum; Zingiberaceae).

EXPERIMENTAL

Analyt. HPLC: A Merck LiChrosorb RP-18-column (5 μ , 25 \times 0.4 cm i.d.) was used. Other chromatographic data were: UV detection, wave length: 254 nm, flow: 1 ml/min, eluent: 2% HOAc in H₂O. The glucoside eluted after 14 min, well separated from other compounds [11]. ¹H and ¹³C NMR spectra were recorded in D₂O and CDCl₃ (acetate) at 300 MHz. Chemical shifts are given in δ values (ppm) with TMS as internal standard. UV spectra were run in MeOH.

Isolation of 1. Whole anise seeds (100 g) were crushed, with water cooling, in a mill and extracted several times with 80% MeOH using an Ultraturrax. After filtration, the filtrate was concd to a small vol. (5 g anise/ml) under red. pres. at 40°. Large amounts of chlorophyll which precipitated were separated on cottonwool. After repeated filtration the viscous residue was used for prep. HPLC.

Prep. HPLC. The residue was chromatographed on a reversed-phase column filled with RP-18, $10\,\mu$ material (Chrompak) as stationary phase with $2\,\%$ HOAc-dist. H_2O as eluent by a flow of nearly 12 ml/min (detector wavelength: 254 nm). Two ml were injected on the column. Fractions of the peak containing 1 were repeatedly collected and carefully freeze-dried.

This chromatographic procedure was repeated once more to purify the isolated compound, an amorphous powder, mp 211–212° (lit. 209–210°). $\lambda_{\rm max}^{\rm MeOH}$ nm: 246. IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3100–3600 (OH), 1680 (C=O), 1620, 1595, 1520, 1460 (benzene ring), 1250 Ar–O–Ether. ¹H NMR (D₂O): δ 8.0 (2H, d, aromatic H), 7.2 (2H, d, aromatic H), 5.2 (1H, d, acetal H), 3.5–4.5 (6H, m, CHOH and CH₂OH protons). ¹³C NMR (D₂O): δ 63.5 (CH₂OH), 72.4, 75.8, 78.5, 79.2 (CHOH), 102.5 (acetal carbon), 119, 134.1 (aromatic C), 128.1 (aromatic C), 163.3 (aromatic C–O), 173.7 (COOH). The tetra-acetate (prepared via Ac₂O–pyridine) was purified by prep. HPLC. ¹H NMR (CDCl₃): δ 2.0 (12H, s, OAc), 7.0 (2H, d, aromatic H), 8.1 (2H, d, aromatic H), 5.1–5.4 and 3.8–4.4 (4+3H, both m, CH₂OAc and CHOAc groups). ¹³C NMR (CDCl₃): δ 20.5–20.6 (Me from OAc), 168.5, 169.1, 169.3, 169.5, 170.2 (COOH and CO from OAc).

Acknowledgements—We wish to thank U. Tecklenborg, Institut für Organische Chemie, Universität Münster, for the ¹H and ¹³C NMR measurements. The work was supported by a grant of Forschungskreis der Ernährungsindustrie via Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AIF).

REFERENCES

- Schulz, J. M. and Herrmann, K. (1980) Z. Lebensm. Unters. Forsch. 171, 193.
- Medvedeva, S. A., Tyukavkina, N. A. and Ivanova, S. Z. (1971) Chem. Nat. Comp. (USSR) 7, 827.
- 3. Niemann, G. J. (1973) Phytochemistry 12, 723.
- 4. Niemann, G. J. (1969) Phytochemistry 8, 2101.
- Gromova, A. S., Lutskii, V. I., Tyukavkina, N. A. (1977) Chem. Nat. Comp. (USSR) 13, 237.
- Ivanova, S. Z., Medvedeva, S. A., Tyukavkina, N. A. and Zelenikina, N. D. (1975) Chem. Nat. Comp. (USSR) 11, 424.
- 7. Strohl, M. J. and Seikel, M. K. (1965) Phytochemistry 4, 383.
- 8. Helferich, B. and Lutzmann, H. (1939) Liebigs Ann. Chem. 537, 11.
- 9. Galensa, R. (1983) Z. Lebensm. Unters. Forsch. 176, 417.
- The Sadtler Standard Spectra, Sadtler Research Laboratories, Inc., U.S.A.
- Dirks, U. and Herrmann, K. (1984) Z. Lebensm. Unters. Forsch. 179 (in press).